The existence of homogeneous geodesics in homogeneous pseudo-Riemannian and affine manifolds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flat Homogeneous Pseudo-Riemannian Manifolds

The complete homogeneous pseudo-Riemannian manifolds of constant non-zero curvature were classified up to isometry in 1961 [1]. In the same year, a structure theory [2] was developed for complete fiat homogeneous pseudo-Riemannian manifolds. Here that structure theory is sharpened to a classification. This completes the classification of complete homogeneous pseudo-Riemannian manifolds of arbit...

متن کامل

Curvature Homogeneous Pseudo-riemannian Manifolds Which Are Not Locally Homogeneous

We construct a family of balanced signature pseudo-Riemannian manifolds, which arise as hypersurfaces in flat space, that are curvature homogeneous, that are modeled on a symmetric space, and that are not locally homogeneous.

متن کامل

Complete k-Curvature Homogeneous Pseudo-Riemannian Manifolds

For k 2, we exhibit complete k-curvature homogeneous neutral signature pseudoRiemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). All the local scalar Weyl invariants of these manifolds vanish. These manifolds are Ricci flat, Osserman, and Ivanov–Petrova. Mathematics Subject Classification (2000): 53B20.

متن کامل

Isoclinic Spheres and Flat Homogeneous Pseudo - Riemannian Manifolds

The structure theory ([3], [8]) for complete flat homogeneous pseudo-riemannian manifolds reduces the classification to the solution of some systems of quadratic equations. There is no general theory for that, but new solutions are found here by essentially the same construction as that used for isoclinic spheres in Grassmann manifolds [4]. It is interesting to speculate on a possible direct ge...

متن کامل

A New Family of Curvature Homogeneous Pseudo-riemannian Manifolds

We construct a new family of curvature homogeneous pseudoRiemannian manifolds modeled on R for integers k ≥ 1. In contrast to previously known examples, the signature may be chosen to be (k+1+a, k+1+b) where a, b ∈ N S {0} and a+ b = k. The structure group of the 0-model of this family is studied, and is shown to be indecomposable. Several invariants that are not of Weyl type are found which wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2010

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2009.12.015